The nature and time course of cortical activation following subthalamic stimulation in Parkinson's disease.
نویسندگان
چکیده
We studied the time course and nature of interactions between the subthalamic nucleus (STN) and the motor cortex in 8 Parkinson disease (PD) patients with chronically implanted STN deep-brain stimulation (DBS) electrodes. We first identified the cortical evoked potentials following STN stimulation. The most consistent potential was positive wave with peak latency of 22.2 +/- 1.2 ms from stimulation of clinically effective contacts. We then stimulated the motor cortex with transcranial magnetic stimulation (TMS) at 2-15 ms and at the latency of the evoked potential ( approximately 23 ms) following STN DBS. TMS induced currents in 3 directions: lateral-medial (LM) direction activated corticospinal axons directly, posterior-anterior (PA), and anterior-posterior (AP) directions activated corticospinal neurons transynaptically. Motor-evoked potentials (MEP) elicited by AP and PA TMS were facilitated at short (2-4 ms) and medium latencies (21-24 ms). However, MEPs elicited by LM TMS were not modified by STN DBS. Short-latency antidromic stimulation of the corticosubthalamic projections and medium latency transmission likely through the basal ganglia-thalamocortical circuit led to cortical evoked potentials and increased motor cortex excitability at specific intervals following STN stimulation at clinically effective contacts. Cortical activation may be related to the clinical effects of STN DBS in PD.
منابع مشابه
Bilateral subthalamic nucleus stimulation improves frontal cortex function in Parkinson's disease. An electrophysiological study of the contingent negative variation.
Parkinson's disease involves impaired activation of frontal cortical areas, including the supplementary motor area and prefrontal cortex, resulting from impaired thalamocortical output of the basal ganglia. Electrophysiologically, such impaired cortical activation may be seen as a reduced amplitude of the contingent negative variation (CNV), a slow negative potential shift reflecting cognitive ...
متن کاملAnatomical situation of the subthalamic nucleus (STN) from midcommissural point (MCP) in Parkinson\'s disease patients underwent deep brain stimulation (DBS): an MRI targeting study
Abstract Introduction: It is demonstrated that the degree of clinical improvement in Parkinson's disease (PD) achieved by deep brain stimulation (DBS) is largely dependent on the accuracy of lead placement. In addition, individual variability in the situation of subthalamic nucleus (STN) is responsible for spatial inter-individual fluctuations of the real patient's target. Objecti...
متن کاملEffect of locus ceruleus phasic electrical stimulation on responses of barrel cortical cells to controlled mechanical displacement in rats
Behavioral and electrophysiological evidences have shown that locus ceruleus (LC) is involved in different tasks including modulation of sensory processing and shift of attention. In the present study, single unit responses of barrel cortical cells was recorded following controlled mechanical displacement of the principal and peripheral vibrissae in adult rats (100 trials of 200 µm deflection f...
متن کاملSubthalamic stimulation modulates cortical motor network activity and synchronization in Parkinson's disease.
Dynamic modulations of large-scale network activity and synchronization are inherent to a broad spectrum of cognitive processes and are disturbed in neuropsychiatric conditions including Parkinson's disease. Here, we set out to address the motor network activity and synchronization in Parkinson's disease and its modulation with subthalamic stimulation. To this end, 20 patients with idiopathic P...
متن کاملSuppression of beta oscillations in the subthalamic nucleus following cortical stimulation in humans
It is unclear how subthalamic nucleus activity is modulated by the cerebral cortex. Here we investigate the effect of transcranial magnetic stimulation (TMS) of the cortex on oscillatory subthalamic local field potential activity in the 8-35 Hz (alpha/beta) band, as exaggerated synchronization in this band is implicated in the pathophysiology of parkinsonism. We studied nine patients with Parki...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cerebral cortex
دوره 20 8 شماره
صفحات -
تاریخ انتشار 2010